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Particle collision efficiencies for a sphere 
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Trajectories are calculated for small particles introduced upstream into a fluid 
flowing past a fixed sphere. Unseparated potential flow is taken as the velocity 
profile for the fluid, and the effect of gravity is included in the formulation when 
it acts along the axis of symmetry. Using a numerical procedure, particle trajec- 
tories which graze the sphere, and the corresponding collision efficiencies, are 
calculated for values of the Stokes number u. When gravity is neglected, an 
analytic solution is obtained for large values of u which is in good agreement with 
the numerical results for cr as low as 5. These results are compared with those 
of Sell (1931) and Langmuir & Blodgett (1946). When gravity is included, a 
critical value of the Stokes number uc is calculated for which no collisions occur 
until B > a,. 

1. Introduction 
The problem of particle collisions in a gas stream is one of extreme importance 

in the mechanism of the removal of dust, smoke and mists in certain types of air- 
cleaning devices. A collision is caused primarily by the divergence of a particle 
from the gas streamlines due to its own inertia. It subsequently crosses the 
streamlines and collides with the obstacle which has caused the disturbance. 
The two main secondary causes are sedimentation, which plays an important 
part in the neighbourhood of the stagnation point, and interception, for relatively 
large particles, when the trajectory of the centre of the particle does not intersect 
the collecting surface. In the present analysis the object or collector is taken to be 
a sphere, and the latter of the secondary causes is eliminated by considering the 
particles to be very small. 

The collection efficiency, E ,  is defined to be the ratio of the number of particles 
striking the collector to the number which would strike it if the streamlines were 
not diverted by the collector. If the particles are uniformly distributed in the gas 
and are of negligible radius compared with that of the sphere, then E is given by 
the ratio yt, where yo is the radial distance from the axis upstream, made dimen- 
sionless with respect to the radius of the sphere, for the particle which just grazes 
the sphere. 
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The way in which the gas flows around the collector will depend on the Reynolds 
number R based on the collector. When R is large, the streamlines do not begin to 
diverge until they are close to the collector, and the flow pattern corresponds to 
that of an inviscid fluid, except of course near to the surface. When R is small, the 
viscous forces have a more marked effect on the flow in spreading the disturb- 
ance caused by the collector further upstream. Thus the streamlines have a 
shallower gradient in this case, and reduce the chances of the particles colliding 
with the collector by diminishing the influence of their inertia. For Reynolds 
numbers greater than 1000 unseparated potential flow provides a fair approxi- 
mation to the actual flow field near the forward surface of the collector, and for 
this reason it is used herein. 

In  this paper the authors have calculated the trajectories of small particles 
introduced upstream into a fluid flowing past a fixed sphere. When gravity is 
neglected, collision efficiencies are calculated for values of the Stokes number u, 
and compared with the results of Sell (1931) and Langmuir & Blodgett (1946). 
When u is large an analytic solution is derived which is exact to order u--2. 

Gravity is included in the formulation when it acts along the axis of symmetry. 
When it acts in such a sense as to oppose the motion of the particles, uc, the 
critical value of the Stokes number for which no collision occurs until u > uc, is 
calculated numerically. It is shown that no such uc exists when gravity acts in 
the other sense. Collision efficiencies are again calculated numerically for both 
cases. 

2. Collision of particles with a sphere for values of u > & 
We consider a sphere of radius a moving steadily with speed U through a 

uniform unbounded fluid. If we assume an incompressible irrotational flow pattern 
about the sphere it was seen in Michael (1968) that the equation of motion of a 
small particle towards the sphere along the upstream axis of symmetry is, in 
dimensionless form, 

,d” dr = -{v+(l-;)], 

where v is the velocity of the particle radially outwards, measured on the scale 
U ,  r is the distance from the centre of the sphere on the scale a,  and is the 
Stokes number .rU/a, where the relaxation time of the particle is T. For spherical 
particles of radius d and density pd, in a fluid of density p and kinematic viscosity 

where R is the Reynolds number Ua/v. The equation assumes that the particle 
is sufficiently small for a linear steady Stokes law of resistance between the 
particle and the fluid to be appropriate. It is also assumed that the resistance is 
opposed to the direction of motion of the particle relative to the fluid. 

The influence of gravity on the trajectory of the particle may be conveniently 
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measured by the ratio e of the terminal velocity of free fall of the particle in the 
fluid to U .  Thus, if g is the gravitational acceleration 

For small enough particles this quantity can in general be neglected. For example 
with pa = 1, d = cm in air the terminal velocity will be 1.28 cm/sec, so that 
provided only that U & 1-28 cm/sec the gravitational effect can be neglected. 
We may also remark here on the justification for the neglect of the unsteady 
Stokes drag terms, and the inertial force. Compared with the steady Stokes force 
which is retained these effects are of the order ( Ud2/av)* and Ud2/av respectively, 
when the relative velocity of the particles to the gas flow is of order U. If we use 
as representative values U = 103 cm/sec and v = 0.15 cm2/sec for air these ratios 
are of the order 10-8 and 

It has been shown by Langmuir & Blodgett (1946) (see also Michael 1968) 
that a particle moving according to (1) will reach the sphere r = 1 in a finite time, 
only when a > A. When a > & a particle which is initially off the axis of sym- 
metry and moving with the gas upstream may collide with the sphere, and it is 
of interest to establish the collision cross-section as a function of a) the collision 
cross-section being the circle of radius yo about the axis such that a particle 
starting upstream from a position within this circle will collide with the sphere. 
Results are given here for collision cross sections based on numerical integration 
of particle trajectories using a trial and error method to establish the value of yo, 
for a given a > A, a t  which the trajectory just touches the sphere. 

We write the fluid velocity u = grad 4, where 4 = (r + [ 1/2r2]) COB 8. The velocity 
components of u are - 

y2 - 2x2 - 3xy 
2 W '  uu = 2(22+y2)Q' 

ux = 1 +  

in which x = r cos 8, and y = rsin 8. 
We first examine the motion of the particle at  a large distance upstream assum- 

ing that it moves with the gas velocity at x = -a. If vx, vy are the component 
velocities of the particle, equations of motion are 

avx- = u - v  
dx x, (3) 

(4) 

After substitution-from (2) into (3) and (4) we can find a series expansion for v, 
and vy, in powers of 1/x, suitable for use at large 1x1, Thus 

(2 1 3a 12 
2 3  2 4  x5 

vx=l+-+-+-+o - , 

3y 66y 30a2y-15y3/4 
2) =-+-+-- x6 +'($)' 
y 2x4 x5 

We deduce from these equations that the particle trajectory is given initially by 
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This series does not converge well enough to be of use when 1x1 N 1. In  our 
work it was used to give a starting-point at x = - 10 for a numerical integration 
of (3) and (4). Step by step integration was carried out with the positions - 10, 
(0.02), - 2, (0.001), 0 in x. The smaller step length near x = 0 is necessary for 
the cases in which IT is just greater than A, because in such a case the critical 
trajectory passes near the stagnation point on the sphere where the velocities 
are small. 

1 1 X 

-2 -1  0 1 

FIGURE 1. Grazing particle trajectories for values of 6 = 0.2, 0.7, 6.0. 
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FIGURE 2. Collision efficiency E as a function of 6. -, Michael & Norey; - - - -, 
Lmgmuir & Blodgett (1946) ; - - - -. - , Sell (1931) ; - * - ., analytical result for large u. 

Table 1 gives values of yo for grazing trajectories for different values of g. 
Included in this table for comparison are values of yo obtained by Langmuir & 
Blodgett who also computed trajectories numerically starting a t  the position 
x = - 3. Grazing trajectories obtained here are plotted in figure 1, and in figure 2 
the collision efficiency ( = l/nu2 (collision cross-sectional area)) is plotted 
against g. This figure also includes results given by Sell (1931) and Langmuir & 
Blodgett (1946). 

We conclude this section of the work with a discussion of particle trajectories 
when cr is large. If s = l/g, the equation of motion of a particle may be written 

dv/dt  = S(U - v), 
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where u, v are the gas and particle velocities respectively. When s = 0, v is con- 
stant for a particle and in our problem we would have v = Ug. For small s we 
write in dimensionless form 

The fist-order equation for v1 is then 

v = 2+sv,+s2v2+ ... . 

Yo 

U 

0.1 
0.2 
0.3 
0.7 
2.0 
3.0 
3.5 
4.0 
5.0 

Michael & 
Norey 

0.01 1 
0.186 
0.327 
0.588 
0.807 
0-86 
0.88 
0-89 
0.906 

Langmuir & 
Blodgett 

0-2 < yo < 0.25 
0.477 

0.66 < yo < 0.7 
0.78 < yo < 0.8 

- 

- 
- 
- 

0.849 < yo < 0.86 

TABLE 1. Values of yo for different u. 

This has a solution vl = - Q grad (l/r), which represents the velocity of a point 
source of strength 4. The second-order equation for v2 is 

which has a solution 

v2 = grad{-- 1 (---) case e +hsinh-l(cote) +- 1 377 
16r3 sin26 sin36 I y ( 16y3 i) grad 'a 

When s = 0 the collision cross section has radius yo = 1, and we can find a power 
series in s showing how this is reduced when s is small. In  spherical polar co- 
ordinates we have 

case 3n +- (1693 i) ) + O(")* 
Y 

The particle path is given by 

(5) 
l d r  v, 
r d 8  v,' 

When s = 0 the path is parallel to the axis and given by rsine = y,,. We write 

-_ - 
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to the second power in s. Substituting in ( 5 )  and equating like powers of s we fhd 
that 

and 

Thus the equation for the path becomes 

S 
rsin8 = yo+-(cos8+1)+s2 

2YLl 

x [3(~-8)cot8+sin28-4(cos8+ l )+3]  . (6) I 
To arrive at the value of yo for which the path touches the sphere let 8 = 8, 
at  this position. Then r = 1 and dr/d8 = 0 at 8 = 8,, and from ( 6 )  we have 

Thus the collision efficiency for large cr is given by 

y = 1-*s+$s? 

1 1  
y ; = 1 - - + - + 0  - . 

0' cr2  ( i 3 )  

This is shown in figure 2 and is in good agreement with the results obtained by 
numerical integration down to values of G N 5. 

3. The influence of gravity acting in the direction of motion of the 
sphere 

In the preceding discussion particle trajectories were found on the assumption 
that the coefficient E is small for very small particles. This means that gravity has 
only a small effect on a particle trajectory in which the particle velocity remains 
at  all points of its path, of order U.  However, particles which come close to the 
stagnation point of the sphere may be slowed down and for these paths gravity 
although represented in terms of a small coefficient can have a significant effect. 
This is particularly relevant when we are interested in the critical value, crc, 
of cr at which collisions will begin to occur. As we have seen previously these occur 
first at the stagnation point and, moreover, at the transition the particle velocity 
is zero and the time of approach is infinite. In this section of our paper we examine 
the modifications due to gravity in the case in which it acts in the direction of 
relative motion of the sphere through the gas, that is along the axis of symmetry. 
This case has the simplification that the axisymmetry is preserved. 

Consider first the motion of a particle along the axis of symmetry upstream 
towards the sphere. The equation of motion may be written 

(7)  

When the sphere moves vertically upwards relative to the gas the positive sign 
is to  be taken. The critical point of the equation is then moved to r = (1 + e)-* 
which is within the sphere. In this case the particle will fall onto the sphere 
irrespective of the value of cr. 
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When the sphere moves vertically downwards the critical point moves to 
ro = (1 - E)-* outside the sphere, If we write r = ( 1  - e)-* + h, (7) may be written 

advldt = - [w + (3  - 4 4  h], dh/dt = V, 

to the first power in E ,  where t is the time. Hence 

A B 
21 = A chit + B e U  , = - eAd + - ehd, 

A1 A 2  

in which A and B are constants, and A,, A, are the roots of 

aAZ+A+(3-44 = 0. 

Let 
1 

0 - -  = &1 + Q € + 0 ( € 2 ) ) .  * - 4(3-46) 

-1.0 t. 
FIGIJRE 3. Sketch of particle paths on the upstream axis of symmetry. 

When CT < go, A, and A, are real roots and the particle approaches the critical 
point monotonically from upstream. When CT > go the particle spirals into the 
critical point and there is then the possibility of a collision with the sphere if on 
the first spiral it reaches the point r = 1. The particle paths in the (v, r )  plane in 
these various cases are sketched in figure 3. We require to find the value of C T ~  > go 

a t  which a spiral path just reaches T = 1. The critical condition will be that v = 0 
whenr = 1 or h. = -&+0(s2) .  

Hence 

If we let t = 0 correspond to this point 
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To obtain a, for a prescribed value of E it is necessary to match the values of 
v and h given by (8) and (9) to an integral of (7) from upstream. As r+oo 
v -+ - (1 - 8)  in this case and a power series solution in terms of l / r  is given by 

1 3 ~ ( 1 - € )  1 2 ( 1 - ~ ) ~  + ... . 
+ r5 

v = -(l-fZ)+-- 
rs r4 

. bc =0.479 - E = 0.2 

uc = 0.223 
B = 005 

FIGURE 4. Critical particle paths on the upstream axis of symmetry are plotted for 
values of e = 0.05, 0.1, 0.2. 

I I I 1 I 

005  0.1 0.15 0 2  
B 

FIGURE 5. Critical value of cr is shown as a function of E ,  

Our method was t o  start at  r = 10 using the value of v given by this series for a 
trial value of cr. The equation was then integrated numerically using a step length 
of 10 (0.02) 2, and then 0.001 down to the point r = 1 + h  with h given by (9) at  
t = -2. The value of v so obtained by integration can then be compared with 
that given by (8) at this value oft. By repeating this process for different values of 
g we are able to identify the value of for which the values of v are the same. 
The calculation was done for E = 0-05,O.l and 0.2, and the values of ac are 0.223, 
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0.306, 0.479 to three places of decimals respectively. Figure 4 shows the critical 
trajectories for these values of E ,  and in figure 5, vc is shown as a function of 6. 

The remaining results to report in this section concern the collision cross 
sections when 8 + 0, which have been obtained, again by numerical integration 
of the trajectories. The equations are in this case 

The positive sign applies when the sphere moves upwards and the negative sign 
for downwards motion. We have seen that in the former case collisions occur when 
E + 0 for any c and collision cross sections may be calculated for all values of v 
in this case. The case (T = 0, E + 0 is easily dealt with mathematically because the 

yo for upward moving sphere yo for downward moving sphere 
c A r > r > 

u E = 0.05 E = 0.1 E = 0.2 E = 0.05 E = 0.1 E = 0.2 

0 0.05 0.09 0.17 No No No 

0.3 0.40 0.46 0.54 0.22 No No 

0.7 0.63 0.66 0.71 0.54 0.49 0.31 
2 0.82 0.84 0.86 0.79 0.76 0-70 

- 0.89 0-86 5 

collision collision collision 

collision collision 

- - - 

TABLE 2. Values for yo for E = 0.05, 0-10, 0.2. 

particle velocity can be simply expressed. In  fact the particle path can here be 
written in terms of the Stokes stream function as 

4r2( 1 + e - l/r3) sin2 8 = k, (12) 
where k is constant. When we apply the conditions r = 1, dr/df3 = 0 for a grazing 
trajectory we find 8 = &r, and k = &, so that the collision cross section in this 
limit is given from (12) by yi = 2k/( 1 + E )  = E / (  1 + E ) .  The numerical integration 
of (10) and (1 1) for larger values of (T yield the results given in table 2 and figure 6. 

A similar numerical programme was performed for the downward moving 
sphere, and the collision efficiencies in this case are also shown in table 2 and 
figure 6. 

4. Concluding remarks 
It has been assumed in this work that particle trajectories calculated from 

equations applying at points away from the sphere boundary can be continued 
up to the spherical surface, and for this reason the results need qualification. 
Two effects which occur when a particle approaches the sphere are: (a) the effect 
of the viscous boundary layer, and (b )  the change in the Stokes resistance due 
to the proximity of the wall. The first of these effects will arise when the particle 
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comes within a distance alR4 of the boundary, where R = Ualv. The second effect 
occurs when the distance is of order d. For small enough particles the region in 
which one has to consider the effects of (b )  is a sublayer of the viscous boundary 
layer as for example with the data assumed in this paper, for which the viscous 
boundary layer is of order 10-2 cm. in thickness. 

1 .o I 
0.8 

0.20 

0.05 
0.05 

0.20 

E = 0.10 for upward moving sphere 

0 = 0.10 for downward moving sphere 

0.6 
YO 

0.4 

0.2 

0 0.5 1 .o 1.5 2.0 2.5 

U 

FIGURE 6. Value of yo EM a, function of r, with 6 = 0.05, 0.1, 0.2. 

Provided that R 9 1 the effect of a viscous boundary layer will be to change 
the gas velocity u in the boundary layer, and it is clear that, except in the cases 
where cr is small, discussed by Michael (1968), the change in the trajectories 
will be small and confined to the boundary layer. Thus although it requires 
further calculation to find the precise effects we do not expect the viscous 
boundary layer to produce any large changes in the results given in this paper. 

When a particle comes within a distance of order d of the sphere the Stokes 
force arising from the particle motion normal to the sphere becomes proportional 
to the velocity/gap, the gap being the distance between the surface of the particle 
and the sphere (see Cox & Brenner 1967). Thus a calculation using this force 
will yield the result that, in the motion normal to the wall, a particle comes to 
rest before collision. Additional forces on the particle produced by the gas shear 
velocity in the boundary layer would mean that the particle continues to move 
very slowly towards the sphere but will not collide in a finite time. It seems clear 
that when dealing with very small particles a continuum model for the forces 
acting on a particle adjacent to the wall is inadequate, and that molecular surface 
forces become effective. Also it may be added that on the length scale of very 
small particle sizes the boundary of the sphere will no longer appear smooth. 
The conditions given in the paper should therefore be interpreted as conditions 
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under which small particles may be brought to within a distance of the order 
of their radii of the surface of the sphere. 

One further point of qualification concerns the cases of large CF for which colli- 
sion cross sections become large. Grazing trajectories in these cases are not close 
to the stagnation point and it may be expected that changes in collision cross 
sections may occur in this case due to the effect of boundary layer separation, 
which produces increasing changes in the upstream velocity potential as one 
moves away from the stagnation point. 
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